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INTRODUCTION: OPTIMAL PROJECTION/MAXIMUM ENTROPY DESIGN SYNTHESIS

In this presentation we (I) discuss the underlying philosophy and

motivation of the optimal projection/maximum entropy (OP/ME) stochastic modelling

and reduced order control design methodology for high order systems with parameter

uncertainties, (2) review the OP/ME design equations for reduced-order dynamic

compensation including the effect of parameter uncertainties, and (3) illustrate

the application of the methodology to several Large Space Structure (LSS) problems

of representative complexity. The basis for this paper is references [I-25] along

with recently obtained results.

The OP/ME approach, as its name suggests, represents the synthesis of

two distinct ideas: (I) reduced-order dynamic compensator design for a given

high-order plant (i.e., optimal projection design) and (2) minimum-information

stochastic modelling of parameter uncertainties (i.e., maximum entropy modelling).

Maximum entropy modelling is discussed in [I-13,15] and optimal projection design

is studied in [6,10,12,14,16-25].

Before attempting an overview of the OP/ME approach, it is important to

discuss the class of problems that motivated this work, namely, control of large

flexible space structures. A finite-element model of a large flexible space

structure is, generally, an extremely high-order system. For example, a version of

the widely studied CSDL Model #2 includes 150 modes and 6 disturbance states, i.e.,

a total of 306 states, along with 9 sensors and 9 actuators. The size of the model

and the coupling between sensors and actuators render classical control-

design methods useless and all but confound attempts to use LQG to obtain a

controller of manageable order. Indeed, these difficulties were a prime motivation

for the optimal projection approach. Besides the high order of these systems,

finite element modelling is known to have poor accuracy, particularly for the

high-order modes. Reasonable and not overly conservative uncertainty estimates

predict 30-50 percent error in modal frequencies after the first 10 modes, with the

situation considerably more complex (and pessimistic) for damping estimates.

Otherwise-successful control-design methodologies widely promulgated in the

aerospace community were severely strained in the face of such difficulties.

As indicated in Figure I, maximum entropymodelling addresses the

robustness problem by permitting direct inclusion of parameter uncertainties in the

plant and disturbance models so that quadratically optimal system design plus

maximum entropy modelling automatically yield system designs that trade

performance off against modelling uncertainties. Furthermore, complexity and cost

generally preclude implementation of very high dimension controllers (as in

standard LQG techniques). Optimal projection design deals directly and rigorously

with the question of system dimension by trading controller order off against

performance.
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OPTIMAL PROJECTION/MAXIMUM ENTROPY

DESIGN SYNTHESIS

• Parameter uncertainties are directly incorporated
into the design process

_:_ Optimal quantification of
robustness/performance tradeoff

• Controller order fixed by implementation constraints

_:_ Optimal quantification of
order/performance tradeoff

Figure I
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MAXIMUM ENTROPY MODELLING

Maximum entropy modelling is a form of stochastic modelling.

Although external disturbances are traditionally modelled stochastically as random

processes, the use of stochastic theory to model plant parameter uncertainty has

seen relatively limited application. All objections to a stochastic parameter

uncertainty model are dispelled by invoking the modern information-theoretic

interpretation of probability theory. Rather than regarding the probability of an

event as the limiting frequency of numerous repetitions (as, e.g., the number of

heads in 1,000 coin tosses) we adopt the view that the probability of an event is a

quantity which reflects the observer's certainty as to whether a particular event

will or will not occur. This quantity is nothing more than a measure of the

information (including, e.g., all theoretical analysis and empirical data)

available to the observer. In this sense the validity of a stochastic model of a

flexible space structure, for example, does not rely upon the existence of a fleet

of such objects (substitute "ensemble" for "fleet" in the classical terminology)

but rather resides in the interpretation that it expresses the engineer's certainty

or uncertainty regarding the values of physical parameters such as stiffnesss of

structural components. This view of probability theory has its roots in Shannon's

information theory but was first articulated unambiguously by Jaynes (see [26-29]).

The preeminent problem in modelling the real world is thus the

following: given limited (incomplete) a priori data, how can a well-defined

(complete) probability model be constructed which is consistent with the available

data but which avoids inventing data which does not exist? To this end we invoke

Jaynes' Maximum Entropy Principle: First, define a measure of ignorance in terms

of the information-theoretic entropy, and then determine the probability

distribution which maximizes this measure subject to agreement with the available

data. The smallest collection of data for which a well-defined probability model

(called the minimum information model) can be constructed is known as the minimum

data set.

The reasoning behind this principle is that the probability distribution

which maximizes a priori ignorance must be the least presumpt£ve (i.e., least

likely to invent data) on the average since the amount of a posteriori learned

information (should all uncertainty suddenly disappear) would necessarily be

maximized. If, for some probability distribution, the a priori ignorance and hence

the a posteriori learning were less than their maximum value then this distribution

must be based upon invented and, hence, generally incorrect data. The Maximum

Entropy Principle is clearly desirable for control-system design where the

introduction of false data is to be assiduously avoided.

It is shown in [I] that the stochastic model induced by the Maximum

Entropy Principle of Jaynes is a Stratonovich multiplicative white noise model.

The earlier developments considered a relatively restricted class of parameter

uncertainties. At present, however, the theory extends to the most general

modelling uncertainties encountered in flexible mechanical systems. Moreover, the

minimum data set presently used to induce the maximum entropy stochastic model

consists of stipulated bounds on the deviations of physical parameters about their

nominal values. This description is both convenient and deeply rooted in

engineering tradition. As indicated in Figure 2, these parameter bounds are the

basic data needed to implement maximum entropy modelling in practice.
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MINIMUM-INFORMATION MODELLING

IN PRACTICE

l
1

PARAMETER
MAGNITUDES IIAill

(NOISE INTENSITIES)

IM,N,MuMo,T,SET|
I THEORETICALLY

Figure 2
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REPRESENTATION OF PARAMETER UNCERTAINTIES

Once significant types of parameter uncertainty have been identified and

bounds on parameter variations established, the maximum entropy model can be placed

form shown in Figure 3. The set {Ai,i=1,...,N} of deterministicin the general

matrices defines the geometric pattern of the uncertain perturbation, gA, of the

dynamics matrix. The norm II Aill defines the magnitude of uncertainty and is

uniquely related to the originally stipulated parameter deviation bound. The

stochastic model which follows in consequence of Jayne's Maximum Entropy Principle

is a form of Stratonovich white noise. This model is extremely mathematically

tractable since the second moment equation for the state can be closed. Moreover,

the Stratonovich formulation allows crucial effects of uncertainty to be

reproduced.

A : Nominal Dynamics Matrix
A + _A : Actual Dynamics Matrix (But _A Is Unknown)

WHITE NOISE REPRESENTATION

P
__A : _ o_i(t)A i

i=1

o_i(t) : Zero-Mean, Unit-Intensity, Uncorrelated White Noise Processes

A i = Uncertainty Pattern

A i = Uncertainty Magnitude

MULTIPLICATIVE WHITE NOISE MODEL

P
_(t) : (A+_ _i(t)Ai)x(t)

i=1

Figure 3
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STOCHASTICDIFFERENTIALEQUATIONSANDTHESTRATONOVICHCORRECTION

Figure 4 displays the stochastic differential equation (second equation
in the figure) arising from the Stratonovich model. To illustrate the crucial
features of this model, a brief review of the literature on multiplicative white
noise is absolutely essential. The theory of stochastic differential equations was
placed on a firm mathematical foundatian by Ito [30] and has been widely
developed and applied to modelling, estimation and control problems [31-59]. The
basic linear multiplicative white noise model is given by the Ito differential
equation:

P
dxt = (Adt + _ d_itA i)X t

i=I

where the deit are Wiener processes. Alt_ough such models were studied extensively

for estimator and control design [40-56], this approach fell into disrepute with

the publication of [58,59] where it was shown for discrete-time systems that

sufficiently high uncertainty levels (i.e., magnitudes il Aill above a threshold)

led to the nonexistence of a steady state solution. Although it was purported in

[58] that this "phenomenon" was an %bvious- consequence of high uncertainty

levels, these conclusions failed to take into account (possibly because of the

discrete-time setting) the subtle relationship between the ordinary differential

equation (the first equation in Figure 4) and the stochastic differential equation.

Indeed, it was shown in [31] that if a stochastic differential equation is regarded

as the limit of a sequence of ordinary differential equations, then the above Ito

equation is _n°t correct. Instead, the ordinary differential equation with

multiplicative white noise corresponds to the corrected Ito equation appearing as
the second equation in Figure 4. It is seen that this differs from the "naive"

equation by a systematic drift term (the Stratonovich correction). Although

skepticism regarding this unusual result was admitted to in [31], the form of the

second equation in Figure 4 was corroborated completely independently by

Stratonovich in [32], whose results actually appeared in the Russian literature

prior to 1965. His approach is based upon an alternative definition of stochastic

integration which differs from Ito stochastic integration by a mathematical

technicality. The Stratonovich approach, it should be noted, has the interesting

feature that approximating sums involve future values of a Brownian motion process

which, although physically unacceptable in the classical view of probability, is

completely consistent with the information-theoretic interpretation.

In spite of the glaring technicality of the Stratonovich correction,

almost all research on the estimation and control of such systems failed to

perceive its physical significance. To the author's knowledge, the work of

Gustafson and Speyer [56] was the only paper prior to the appearance of [I] which

demonstrated the crucial feature: The Stratonovich correction neutralizes the

threshold uncertainty principle. In particular for systems which are inherently

stable under particular parameter variations (e.g., structures with uncertain

stiffness matrices), the Stratonovich formulation correctly predicts unconditional

second-moment stability - in contrast to the Ito formulation within which a

stringent uncertainty threshold is encountered.
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STRATONOVICH CORRECTION

Stratonovich, 1966 [31]; Wong and Zakai, 1965 [32]

Ordinary Differential Equation:

It6 Stochastic Differential Equation:

P
_(t) = (A + _ _i(t)Ai)x(t)

i=1

dx t = (Asdt +
P

d_itAi)xt
i=1

A
S

m

\ /
V

correction

Figure 4
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MAXIMUM ENTROPY MODIFICATION OF THE STATE CONVARIANCE EQUATION

Note that when undertaking quadratic optimization within the maximum

entropy model, one minimizes the mathematical expectation of the usual quadratic

performance penalty taken over the maximum entropy statistics. Thus the feature of

the stochastic model most utilized in practice is the second moment equation for

the system state. The form of this equation that results from the Stratonovich

white noise model is given explicitly in Figure 5. The "stochastic modification"

term given by the bottom expression in Figure 5 distinguishes this stochastic

Lyapunov equation from the ordinary Lyapunov equation that would result from a

deterministically parametered model.

The importance of the stochastic modification term cannot be underrated.

In particular, for most types of parameter uncertainty encountered in structural

systems, the Stratonovich corrections in M[Q] imply progressive decorrelation

between pairs of dynamical states. This informational or statistical damping

phenomenon is a direct result of parameter uncertainties that is captured by the

multiplicative white noise model. The Stratonovich correction, moreover, is

crucial: By neutralizing the threshold uncertainty principle, it permits the

consideration of long-term effects for arbitrary uncertainty levels.

P

(_(t) : AsQ(t ) + Q(t)A T + i =IAiQ(t)AT+ v

Q(t) = E[x(t)x(t) T] (Th___eequantity of interest in quadratic optimization)

E = Average over parameter uncertainties and disturbances

lP.2
A s = A + m_. '_i V = Disturbance Intensity

2 i=1

STOCHASTIC MODIFICATION

P 2 ,_ i2T) p` T
M[Q] :12._.:_ZIA i Q + Oi:l A +IZIAiQAi':

Figure 5
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RAMIFICATIONSFORTHESTRUCTUREOFTHESTEADYSTATECOVARIANCE

The far-reaching ramifications of the foregoing observations are
explored extensively in [I-10]. As an example, assume(as is usually the case in
practice) that uncertainties in modal frequency obtained from a finite-element
analysis of a large flexible space structure increase with modenumber. From the
form of M[Q(t)] it is easy to deduce that the steady state covariance becomes
increasingly diagonally dominant with increasing frequency and thus assumesthe
qualitative form given in Figure 6. The benefits of this sparse form are
important: The computational effort required to determine the steady state
covariance (and thus to design a closed-loop controller, for example) is directly
proportional to the amount of information reposed in the model or, equivalently,
inversely proportional to the level of modelled parameter uncertainty. This casts
new light on the computational design burden vis-a-vis the modelling question: The
computational burden depends only upon the information actually available. A \
simple control-design exercise involving full-state feedback for a simply supported
beampresented in [4] illustrates this point. The gains for the higher-order modes
of the beam,whosefrequency uncertainties increase linearly with frequency, were
obtained with modest computational effort in spite of 100 structural modesincluded
in the model. Another important ramification of the qualitative form of Q is the
automatic generation of a high/low-authority control law. Note that for the
higher order and hencehighly uncertain modesthe control gains reported in [3,4]
indicated an inherently stable, low performance rate-feedback control law, whereas
for the lowest order modesthe control law is high authority, i.e., "LQ" in
character.

EFFECT OF FREQUENCY UNCERTAINTIES ON
THE QUALITATIVE STRUCTURE OF THE

STEADY-STATE COVARIANCE Q = lim E[x(t)x(t) T]
t_

01

_0

COHERENT j

(WELL-KNOWN MODES)

Qkk _0

\

_0 Qnn

• L,NANER NT
(POORLY KNOWN MODES)

INFORMATION REGIMES
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PERFORMANCE ROBUSTNESS

Figure 7 illustrates the basic concept of robustness with respect to

performance that is so essential to adequate LSS control design. The curves shown

sketch the variation of closed-loop performance (e.g., line-of-sight error) for

particular control designs when system parameters deviate from their nominal values.

As illustrated in one example below, standard LQG design provides a sharp minimum

at the nominal parameter values but can be extremely sensitive to off-nominal

variations. On the other hand, since the maximum entropy formulation includes the

deleterious effects of uncertainty within the basic design model, it provides the

mechanism to assure satisfaction of performance objectives not only for the nominal

model but also over the likely range of parameter deviations. Note that the price

paid for this is a degradation of performance (relative to a deterministic model,

LQG design) whenever the system parameters happen to be near their nominal values.

However, this tradeoff between nominal performance and robustness is widely

recognized as an inescapable fact of life. The prime motivation for the maximum

entropy development is to achieve a design methodology which sacrifices as little

near-nominal performance as possible while securing performance insensitivity over

the likely range of modelling errors.

CLOSED-LOOP
LINE-OF-SIGHT

ERROR

PERFORMANCE
SPECIFICATION

NOMINAL MODEL

MODELLINGUNCERTAINTY

LQG DESIGN

ROBUST

,.. PARAMETER
v SPACE

Figure 7
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DEVELOPMENT OF THE OP/ME SYNTHESIS

At this point, we consider the optimal projection approach and its

amalgamation with maximum entropy modelling. Figure 8 illustrates that the overall

development proceeded along two distinct paths, starting from standard LQG theory.

One path of development (the right branch) retained the LQG assumption that the

dynamic controller to be designed is of the same dimension as the plant but

extended the theory by including the effects of parameter uncertainty via

stochastic modelling. The optimality conditions for full-order dynamic

compensation under a maximum entropy model are the principal design results and

consist of two modified Riccati equations coupled to two Lyapunov equations by the

stochastic modification terms. These equations were presented in [5,15] and were

also independently discovered by a Soviet researcher [57].

The second path of development from LQG retained the assumption of a
deterministically parametered model but removed the restriction to full-order

compensation - i.e., a quadratically optimal but fixed-order compensator is sought

for a higher order plant in order to simplify implementation. This led to the

optimal projection approach to fixed-order compensation.

The optimal projection approach is based entirely on a theorem which

characterizes the quadratically optimal reduced-order dynamic compensator.

Assuming a purely dynamic linear system structure for the desired compensator whose

order is determined by implementation constraints (e.g., reliability, complexity or

computing capability), a parameter optimization approach is taken. There is, of

course, nothing novel about this approach per se and it has been widely studied in

the control literature [60-73]. Clearly, the parameter optimization approach fell

into disrepute because of the extreme complexity of the grossly unwieldy

first-order necessary conditions which afforded little insight and engendered brute

force gradient search techniques. The crucial discovery occurred in [6] where it

was revealed that the necessary condition for the dynamic-compensation problem

gives rise to the definition of an optimal projection as a rigorous, unassailable

consequence of quadratic optimality without recourse to ad hoc methods as in

[74-83]. Exploitation of this projection leads to immense simplification of the

"primitive" form of the necessary conditions for this problem. The novel equations

consist of two modified Riccati equations and two modified Lyapunov equations

(analogous to the four optimality conditions for full-order compensation under

maximum entropy models) coupled, in this instance, by a projection of rank equal to

the desired controller dimension. This "optimal projection" essentially

characterizes the geometric structure of a reduced-order plant model employed

internally by the compensator.
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OPTIMAL PROJECTION/MAXIMUM ENTROPY
APPROACH TO

LOW-ORDER, ROBUST CONTROLLER DESIGN

LOG
2 RICCATI

(SEPARATED)

LOW-OROER PARAMETER
CONSTRAINT UNCERTAINTIES

OP
2 RICCATI + 2 LYAPUNOV

(COUPLED BY OPTIMAL PROJECTION)

ME
2 RICCATI + 2 LYAPUNOV

(COUPLED BY STOCHASTIC EFFECTS)

PARAMETER LOW-ORDER
UNCERTAINTIES CONSTRAINT

0P/ME
2 RICCATI + 2 LYAPUNOV

(COUPLED BY OPTIMAL PROJECTION AND
STOCHASTIC EFFECTS)

Figure 8
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SURVEY OF APPROACHES TO FIXED-ORDER DYNAMIC COMPENSATOR DESIGN

Before describing the synthesis of the optimal projection (OP) and

maximum entropy (ME) approaches, we sketch the relationship between optimal

projection and previously proposed techniques for reduced-order compensator design.

The general relationships among general categories of approaches are illustrated in

Figure 9.

The basic premise is that the plant to be controlled is distributed

parameter in character (as are structural systems). The usual engineering approach

(the right branch in Figure 9) is to replace the distributed parameter system with

a high-order finite-dimensional model. However, fundamental difficulties remain

since application of LQG leads to a controller whose order is identical to that of

the high-order approximate model. Attempts to remedy this problem usually rely

upon some method of open-loop model reduction followed by LQG design or LQG design

followed by closed-loop controller reduction (see, e.g., [74-83]). Most of these

techniques are ad hoc in nature, however, and hence guarantees of optimality and

stability are lacking.

A more direct approach that avoids both model and controller reduction

is to fix the controller structure and optimize the performance criterion with

respect to the controller parameters. This is the optimal projection formulation.

As noted above, the new forms of optimality conditions discovered in [6] harbor the

definition of an oblique projection (i.e., idempotent matrix) which is a

consequence of optimality and not the result of an ad hoc assumption. By

exploiting the presence of thi_--Foptimal projection," the originally very complex

stationary conditions can be transformed without loss of generality into much

simpler and more tractable forms. The resulting equations (see (2.10)-(2.17) of

[22]) preserve the simple form of LQG relations for the gains in terms of

covariance and cost matrices which, in turn, are determined by a coupled system of

two modified Riccati equations and two modified Lyapunov equations. This coupling,

by means of the optimal projection, represents a graphic portrayal of the demise of

the classical separation principle for the reduced-order controller case. When, as

a special case, the order of the compensator is required to be equal to the order

of the plant, the modified Riccati equations immediately reduce to the standard LQG

Riccati equations and the modified Lyapunov equations express the proviso that the

compensator be minimal, i.e., controllable and observable. Since the LQG Riccati

equations as such are nothing more than the necessary conditions for full-order

compensation, the "optimal projection equations" appear to provide a clear and

simple generalization of standard LQG theory.

On the other hand (see the left branch of Figure 9), the approach taken

by the mathematical community accepts the distributed parameter model, extends LQG

results to obtain a controller of similarly infinite dimensional nature and then

resorts to discretization and truncation to achieve a suitably low-order (and

finite dimensional) controller for implementation. However, the finite-dimensional

approximation schemes that have been applied to optimal infinite-dimensional

control laws [84-87] only guarantee optimality in the limit, i.e., as the order

of the approximating controller increases without bound. Hence, there is no

guarantee that a particular approximate (i.e., discretized) controller is actually

optimal over the class of approximate controllers of a given order which may be

dictated by implementation constraints. Moreover, even if an optimal approximate

finite-dimensional controller could be obtained, it would almost certainly be

suboptimal in the class of all controllers of the given order.
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It should be mentioned that notable exceptions to the above-mentioned
work on distributed parameter controllers are the contributions of Johnson [88]
and Pearson [89,90] who suggest fixing the order of the finite-dimensional
compensator while retaining the distributed parameter model. Progress in this
direction, however, was impedednot only by the intractability of the optimality
conditions that were available for the finite-dimensional problem, but also by the
lack of a suitable generalization of these conditions to the infinite-dimensional
case. Recent results [18,21,23] madesignificant progress in filling these gaps by
deriving explicit optimality conditions which directly characterize the optimal
finite-dimensional fixed-order dynamic compensator for an infinite-dimensional
system and which are exactly analogous to the highly simplified optimal projection
equations obtained in [6,12,14,16,22] for the finite-dimensional case.
Specifically, instead of a system of four matrix equations we obtain a system of
four operator equations whose solutions characterize the optimal finite-dimensional

fixed-order dynamic compensator. Moreover, the optimal projection now becomes a

bounded idempotent Hilbert-space operator whose rank is precisely equal to the

order of the compensator.

As Figure 9 suggests, this represents the most direct approach yet taken

to designing low-order controllers for infinite-dimensional systems. Computational

techniaues for _O]lJti_n of hhe operator _q,,_ _m_ +_ _^. ^*• _ ............................. _,,e _j_ _ ,esearch,

but success in the finite-dimensional case leads to confidence that existing

solution techniques can be appropriately generalized.

i

I INFINITE- I
DIMENSIONAL

LOG

I CONTROLLER I
DlSCRETIZATION/

TRUNCATION
i

OPTIMAL I _<

PROJECTION
EQUATIONS

FOR
DISTRIBUTED
PARAMETER

SYSTEMS

(
MODEL

REDUCTION
METHODS

CONTROLLER I

REDUCTION
METHODS

1

•o.c..Y..No,o.s....sTE,."EX,L,C,.O.,M..,.CONO,T,ONSr
COMPENSATION," 22N0 IEEE CDC | FOR DISTRIBUTED J

SAN ANTONIO, DECEMBER 1983 [ 1 6 ] _ SYSTgM _ v_ PARAMETER _F

>_$ 0. S. BERNSTEIN, D. C. HYLAND,
"EXPLICIT OPTIMALITY CONDITIONS

FOR FIXED-ORDER DYNAMIC
COMPENSATION OF INFINITE-
DIMENSIONAL SYSTEMS" 1983 SlAM
FALL MEETING, NORFOLK, VA,
NOVEMSER1983 [23]

Figure 9
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STEADY STATE REDUCED-ORDER DYNAMIC COMPENSATION

PROBLEM WITH PARAMETER UNCERTAINTIES

Now we explicitly present the combined OP/ME design equations. First,

Figure 10 gives the problem statement. The high-order, uncertain plant has state

XE]R N where N is finite. As indicated using previous notation, uncertainties in

the dynamics matrix, A, the control input matrix, B, and the sensor output matrix,

C, are all modelled via the maximum entropy approach. Furthermore, the general

formulation allows cross-correlation between the disturbance noise, Wl, and the

observation noise, w 2.

The object is to design a lower order dynamic controller with state

XcEIRN c where N c < N by choosing the controller matrices Ac, Bc and Cc so as to

minimize the indicated quadratic performance criterion. Note that the possibility

of cross terms (R12+0) in the performance index is accounted for in this
formulation.

y

HIGH-ORDER, UNCERTAIN PLANT

P P

i : (A+ ! o_iAi)x + (B + "_ _iBi)u + w 1
i:1 i:1

y : (C +" _iCi)x + w 2
i:1

Xc : Acxc + BcY I_u =Ccx c

LOW-ORDER CONTROLLER

PERFORMANCE CRITERION

J(Ac,Bc,C c) - lim E[xTRlx + 2xTR12 u + uTR2 u]
t--_

Technical Assumption: Bi_0_Ci:0

Figure I0
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MAIN THEOREM OF OP/ME: OPTIMAL COMPENSATOR GAINS

With the foregoing problem statement, the quadratically optimal gains

are given by the first three expressions in Figure 11. These relationships are

basically LQG in character - the major modification being brought about by the

appearance of the matrices FEIRNcXN and GEIRNc xN. A particular factorization of

the optimal projection _, i.e., FGT=INc, is represented by r and G _-o t--_-t _ _ GTF

is idempotent. Note that any rank N c projection can be factored in this way and,

for given T, any and all such factorizations yield the same closed-loop performance

(see [22]).

Determination of A c, B c and C c requires that we first solve the basic

design equations (shown in Figure 12) for the quantities Q, P, and _, _ and _.

The notational conventions given on the lower half of Figure 11 serve to define

these design equations precisely.

A A

CONTROLLER GAINS (Functions of Q, P, Q, P)

A c : r(As-BsR';_sPs-QsV_Is Cs)GT

-1
B c = FQsV2s

C c = -R_lsPs GT

NOTATION

AA
QP : GTMI ',

I'G T : Inc (=:> T : GTI" =7-2)

P

AQA T: i_IAiQAT,.:
AQL_ :

P

_AiQB i, etc.
i:1

As:A+IA 2 Bs: B +lAB Cs: C +_A

R2s :

Qs

R 2 + BT(P+P)_

A
QC I + V12 + A(Q+Q)¢ T

V2s

Ps

A

: V 2 + c(Q+Q)¢ T

A

: slp * eT2* BT(p,p)A

Figure 11
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OPTIMAL PROJECTION/MAXIMUM ENTROPY DESIGN EQUATIONS

Finally, Figure 12 shows the fundamental OP/ME design equations for

determination of P, Q, _, _ and _. The nonnegative-definite matrices P and Q are

analogous to the regulator and observer cost matrices of LQG and are determined by

two modified Ri_cati equations. The two modified Lyapunov equations satisfied by
matrices _ and P are analogous to the Lyapunov equations determining

controllability and observability Grammians that are employed by many of the

current, suboptimal, controller-order reduction schemes. Note that the optimal

projection, _, is given explicitly in terms of the group generalized inverse of the

product_P. Thus, the nonnegative-definite matrices _ and _ largely serve to

determine 3.

In contrast to LQG, all four equations are coupled both by the optimal

projection and by the stochastic modification terms - indicating that the

classical separation principle generally breaks down under restrictions on

controller dimension and/or under the impact of parameter uncertainties.

The four equations in Figure 12 summarize a generalized LQG-type

approach wherein robust controllers of low dimension follow as a direct consequence

of the optimality criterion and a priori uncertainty levels. Moreover, the

computational task is well-defined: solve a system of two Riccati and two Lyapunov

equations coupled by the optimal projection and stochastic effects. A variety of

computational procedures are presented in [I, 4, 14-15, 17, 19] and these are

currently included in an automated design software package. We illustrate this

automated design capability in the example problems that follow.

A A

SOLVE FOR NONNEGATIVE-DEFINITE Q, P, Q, P

T -1 ^ -1 T -1T _T T
0 : AsO * OAs + * V1 + (A-t__R2sFs)O(_,-_R2SFS) - _sV2s_Js+ _ksV2s_-sri

I

0= ATp+ pA s + ATp_, + R 1 (A-_sV21sC,TI_(_,-@sV21sC)- _TR21st's + T ,T_-I.,+ r± s n 2s sri

-1 A _ .
0= (As-BsR2s,_s,Q+ Q(As-BsR21sFs )T + _sV21s_TS - _ ..-1 _T TriksV 2s k s r l
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EXAMPLEI: CSDLMODEL#2

The first two examples considered here illustrate application of the
optimal projection approach without inclusion of parameter uncertainty effects.
The third and final example serves to illustrate the combined OP/MEdesign
capability.

The first case was treated in [17] and is depicted in Figure 13.
Specifically, it is a version of the CSDL,ACOSSModel 2 previously considered in
[91]. The steady state performance index has the form

J = E [xTRIX]÷ RE [uTu]

where R I represents the state penalties on mean square line-of-sight errors and
defocus and R is a positive scalar. Clearly, controller authority and bandwidth

are both inversely proportional to R.

This example was used to compare both theoretically and

numerically the optimal projection approach with a variety of suboptimal

controller-order reduction methods. The theoretical comparison shows that all
....... _ _,,_+_m_1 f_nh_n,,_ _Q_n_1 1_r _Pin_ _ (q_lhnntim_] I npniQntinn

characterizing the reduced-order compensator. In contrast, the optimaI projection

design equations define the needed projection by rigorous appiication of optimality

principles. Moreover, all the approaches considered in [7] can be displayed in a

common notation, and this graphically reveals the suboptimal design equations as

special cases of or approximations to the optimal projection equations.

3 I

z I/i 5

x Y

REFERENCE:[91]

R E Skelton and P C Hughes, "Modal Cost Analysis for Linear Matrix Second-Order Systems," J Dyn Syst

Meas and Control Vol 102, September 1980. pp 151-180
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NUMERICALCOMPARISONOFSUBOPTIMALANDOPTIMALPROJECTIONAPPROACHES

Nowfor the numerical comparisons. As is standard in the application of
quadratic optimization, one characterizes each design for a fixed compensator order
by plotting the "regulation cost" (E[XTRIX]) as a function of the "control cost"
(E[uTu]). Results for these tradeoff curves are shownin Figure 14. The very
bottom-most curve represents the full-order, LQGdesign. Since this is the best
obtainable when there is no restriction on compensator order, the problem is
obtaining a lower order design whosetradeoff curve is as close to the LQGresults
as possible.

The thin black lines in Figure 14 show the Nc = 10, 6, and 4 designs
obtained via ComponentCost Analysis [83], where Nc denotes the compensator
dimension. This appears to be the most successful suboptimal method applied to the
example problem considered here. Note that the 10th and 6th order compensator
designs are quite good, but when compensatororder is sufficiently low (Nc = 4) and
controller bandwidth sufficiently large (R<5.0), the method fails to yield stable
designs. This difficulty is characteristic of all suboptimal techniques surveyed,
and, in fairness, it should be noted that most other suboptimal design methods fail
to give stable designs for compensator orders below 10.

In contrast, the width of the grey line in Figure 14 encompassesall the
optimal projection results for compensators of orders 10, 6, and 4.
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OPTIMALPROJECTIONRESULTSFORPERFORMANCE/COMPLEXITYTRADEOFF

To provide a more detailed picture of the optimal projection results,
Figure 15 shows the percent of total performance increase relative to the
full-order, LQGdesigns as a function of I/R (proportional to controller bandwidth
and to actuator force levels) for the various compensator orders considered.

Even for the 4th order design, the optimal projection performance is
only -5 percent higher than the optimal full-order design. Furthermore, the

performance index for the optimal projection designs increases monotonically with

decreasing controller order - as it should. Such is not the case for suboptimal

design methods.

These results reinforce our belief that the optimal projection approach

is a powerful and highly reliable alternative to current reduced-order control

design methods.
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EXAMPLE 2: 15-M HOOP/COLUMN ANTENNA CONTROLS/DYNAMICS EXPERIMENT CONCEPT

The second example of the application of optimal projection involves

significant interplay among controller design, experiment design, and control
hardware selection.

To further the technology development goals of the planned Large Space

Antenna Flight Experiment, Harris GASD has undertaken a preliminary study for

design of a ground-based controls and dynamics experiment involving the 15-M

Hoop/Column Antenna. This structure is a deployable mesh reflector design for

space communications applications.

In designing the experimental apparatus, it was our goal to establish

performance requirements, disturbance spectra, etc., to emulate (not simulate a

flight test) the generic pathologies of large space systems. Care was also taken

in selecting control hardware and software in such a way as to provide a good

test-bed for a variety of system identification and control design approaches.

The basic experimental configuration motivated by the above

considerations is depicted in Figure 16. As shown, the entire spacecraft is

suspended by a cable secured to the ceiling of a radome. The point of attachment

to the structure is inside the primary column segment approximately 1.5 inches

above the center of mass. The resulting gravity moment arm provides some slight

restoring stiffness and prevents the cable from resting against the column.

Absence of an RF feed (replaced by equivalent weights) permits the suspending cable

to run clear through the aperture of the upper column segment, thereby permitting

approximately 5o of rotational motion along both horizontal axes.

Steady-state random disturbances are to be supplied by two-axis torquers

located within the spacecraft bus. The selected location provides significant

disturbability to the first hundred modes and a high degree of disturbance to -50
modes.

15-METER H/C MODEL CABLE SUSPENDED

CONFIGURATION FOR GROUND TESTING

iiiii.......
COlE ACTUATORS IX.YI

RATE GYROS IX YJ

SAMS COD
ARRAY

TARGETS FOR SAMS MEASUREMENT

SYSTEM (1 TARGET EVERY 4TH GORE)

STRAIN GAUGES

{I EVERY 2NO GORE)

PIEZOELECTRIC

TENSIONERS EVERY

2NO GORE {ALE CORDS ON
A GORE)

JACX SCREW POStTIDNERS

EVERY 4TR GORE {MIODLE
ANO OUTER CORDSI

2 DISTURBANCE

TORQUES ALONG THE

i X AND Y AXES AT S/C BUS
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DISTRIBUTION OF MODAL FREQUENCIES FOR 15M CONTROLS/DYNAMICS EXPERIMENT CONCEPT

Detailed finite element analyses of this cable-suspended configuration

have been carried out, and the overall distribution of modal frequencies can be

summarized as in Figure 17. The figure shows the "mode-count" versus frequency;

i.e., N(_) denotes the number of modes below a given frequency, _. As indicated,

there is a collection of "quasi-rigid-body" nodes at low frequencies. Each of

these modes involves a compound pendulum motion on the cable with the spacecraft

undergoing essentially rigid-body rotations and translations. The quasi-rigid-body

modes provide a rather accurate simulation of rigid body degrees of freedom. At

-7.5 Hz and above, there emerge the overall beam bending or "spacecraft" modes

involving bending of the supporting hoop and central column. Finally, the rapid

increase in mode count above -11Hz is accounted for by the very closely spaced

"antenna surface" modes - involving motion primarily of the mesh surface and its

underlying tensioning and control cords.
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15-M EXPERIMENT - INSTRUMENTATION CONCEPT AND DESIGN RESULTS

Because there is a wide dispersion of disturbability for the selected

disturbance source, it is possible to deliberately shape the disturbance spectrum

to provide significant excitation of a desired number of modes. The selected

spectrum is broad band with a half-power band limit of 15 Hz. As is evident from

Figure 17, the 15 Hz bandwidth easily covers more than 100 modes.

Of course, significant disturbance on a large number of modes does not

alone suffice to create a challenging control problem - selection and scaling of

performance criteria are also necessary tasks in the experiment design. Refs. [92,

93] give details on the selected quadratic performance index. Basically, the state

penalty consists of three main terms which impose performance penalties on (I)

pointing errors, (2) misalignment and defocus errors, and (3) antenna surface shape
errors.

With the control objectives thus defined, the control design and

actuator/sensor selection methodologies were exercised iteratively to obtain a set

of applicable, low-cost devices. The resulting instrumentation plan is depicted in
Figure 18 a and detailed in [93].

Design results including dynamics models for the full complement of

control hardware devices indicated in Figure 18 '7 are reported in [93]. For

simplicity, we consider results on a subproblem involving only elastic mode

vibration control using four jackscrew positioner devices and four strain gauges
mounted on the control cords.

Despite a large number of modes included in the design model, optimal

projection designs were successfully obtained and the effect of decreasing the

control input penalty (progressively increasing the control authority) on

closed-loop system poles is indicated in Figure 18 b. It is seen that while high

order modes remain stable, significant increases in damping can be achieved for

lower order modes within the limitations (force/bandwidth) of the actuators and

sensors.
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15-M EXPERIMENT: PERFORMANCE/COMPLEXITY TRADEOFF RESULTS

For the problem considered above, Figure 19 summarizes the tradeoffs of

performance versus controller complexity (compensator dimension) and control

authority (control input weighting in the performance index). Generally, it is

seen that compensators of dimension > 10 yield negligible improvement in

performance. This conclusion holds for the general problem including all hardware

devices and rigid body modes. Thus, memory and throughput requirements for the

processor needed to implement the control algorithm were sized on the assumption

that N c _ 10. These estimates were then used to arrive at the processor selection

indicated in Figure 18.a. Specifically, the control algorithm would be implemented

on the HP 9836A Desktop Computer. This is a Motorola MC68000 microprocessor-based

(16-bit) machine. Also, the HP-6942A Multiprogrammer can be utilized to perform

all a/d and d/a conversions as well as data handling. An external CPU is included

to assist in data handling and route data to off-line storage. After completion of

a given experimental sequence, stored data can be analyzed, parameter identification

tests can be performed and results can be correlated with analytical predictions.
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EXAMPLE3: SPACECRAFTCONTROLLABORATORYEXPERIMENT(SCOLE)

Our third and last example is used primarily to illustrate application
of the maximumentropy design-for-uncertainty approach. Harris GASDhas just
completed a NASALaRCsupported study on the Spacecraft Control Laboratory
Experiment (SCOLE)configuration shownin Figure 20. This is the subject of the
NASA/IEEEDesign Challenge described in [94]. Since the study is specifically
aimed at exploring the maximumentropy approach, its scope is restricted in other
areas. Specifically, we consider the steady state pointing problem using linear,
continuous-time models of all subsystems.

A high order finite element model was constructed for SCOLE,treating
the Shuttle and reflectors as rigid bodies and the connecting mast as a classical
beamwith torsional stiffness. This model includes the Shuttle products-of-inertis
and the offset between reflector center-of-mass and its attachment point on the
mast. The quadratic performance penalty on the system state is simply the total
meansquare line of sight error (as defined in [94]). Full details of our model
and design results are given in [95].

Jk

i

x 4

2

Figure 20
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COMPARISONOF CLOSED-LOOPPOLESENSITIVITYFORLQGANDMAXIMUMENTROPYDESIGNS

As part of the SCOLEstudy, we considered a system model including the
first eight modesand (I) performed LQGstudies to select the control authority and
establish a baseline and (2) designed full-order (16 state) compensatorswith a
maximumentropy model of modal frequency uncertainties. The maximumentropy model
assumedthat all elastic modefrequencies were subjected to independent variations
(due to modelling error) of +o to -o relative to their nominal values. Thus the
positive number o denotes the overall fractional uncertainty.

Although robust stability is obtained under these independent and
simultaneous variations, the robustness properties of specific designs are simply
illustrated here by looking at the variation of performance and closed-loop poles
when all modal frequencies are varied by the samefractional change from the
nominal values. In other words, we interconnect a given controller design (be it

LQG or maximum entropy) with a perturbed plant model wherein all modal frequencies

are changed by 6 x (nominal values) and evaluate the closed-loop performance and

pole locations. This is repeated for a range of values of 6.

Figure 21 a shows how the pole locations for an LQG design wander under

a _5% variation of the modal frequencies. It is seen that two of the pole pairs

are particularly sensitive and are nearly driven unstable by only this +5%

variation. This happens because the associated structural modes contribute little

to performance and the LQG design attempts a "cheap control" (small regulator and

observer gains) by placing compensator poles very close to the open-loop plant

poles. For nominal values, this scheme achieves significant shifts of open-loop

poles with very small gains, but it is highly sensitive to off-nominal

perturbations.

Figure 21 b shows closed-loop poles for the same conditions except that

a maximum entropy compensator design with o = 0.1 (10% variation modelled) was

utilized. In contrast with Figure 21 a, the maximum entropy design makes the

compensator poles "stand-off" deeper in the left half plane. (This is a direct

consequence of the Stratonovich correction.) Consequently, the strong and

sensitive interactions noted above are entirely eliminated. The poles associated

with higher-order structural modes are seen to vary only along the imaginary axis
and are not destabilized.
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VARIATION OF PERFORMANCE WITH SYSTEM PARAMETER DEVIATIONS:

DETERMINISTIC MODELLING VERSUS MAXIMUM ENTROPY DESIGN

Figure 22 illustrates how the total performance index for given

controller designs varies as the structural mode frequencies are perturbed relative

to their nominal values. The LQG design (which is simply a maximum entropy design

for o= O) becomes unstable for > 7% and < -14% variations. In contrast and even

with a modest 10% level of modelled uncertainty, the maximum entropy designs

completely eliminate the sensitivity. Note that within the parameter range for

which LQG is stable, the o = 0.1 maximum entropy design experiences only a -12-15%

degradation. Of course, over the regions for which LQG is unstable, the maximum

entropy designs are qualitatively superior.

These results serve to illustrate a general fact: By incorporating

parameter uncertainty as an intrinsic facet of the basic design model, the maximum

entropy formulation is able to secure high levels of robustness with little

degradation of nominal performance.
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COMBINED OP/ME DESIGN: PERFORMANCE/COMPLEXITY TRADEOFF

Finally, the combined OP/ME design capability was exercised, taking the

16-state maximum entropy compensator design with a = 0.10 frequency uncertainty

level as the starting point. Reduced order compensator designs were constructed

for compensators of order 14,12,10,8,6 and 5. Figure 23 shows the tradeoff between

performance (total, closed-loop performance index evaluated for nominal values of

modal frequencies) and controller dimension. The Figure clearly shows that

performance degradation for compensator orders above 6 is negligible. The 6th

order controller sacrifices only 3% of the performance of the full-order (16 state)

controller. This would seem to be acceptable in view of the better than sixfold

decrease in implementation costs (e.g., flops required in matrix multiplication)

which results from order reduction.

In conclusion, these results, together with much additional material

included in [95], demonstrate automated solution of the full OP/ME design equations

(shown in Figure 12) and illustrate the performance and implementation benefits to

be expected under this unified approach.
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